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1. Introduction

An overview

Symmetric positive systems of first-order linear partial differential equations were introduced
by K. O. Friedrichs [21] in 1958 and today they are also known as Friedrichs systems. His
immediate goal was the treatment of equations that change their type, like the equations modelling
the transonic fluid flow.

The class of Friedrichs systems encompasses a wide variety of classical and neoclassical linear
partial differential equations of continuum physics, regardless of their type, paired with vari-
ous (initial) boundary conditions (Dirichlet, Neumann, Robin). This includes boundary value
problems for some elliptic systems, mixed initial and boundary value problems for parabolic and
hyperbolic equations, and boundary value problems for equations of mixed type, such as the
Tricomi equation. For some specific examples we refer to [4, 5, 6, 15, 19, 24 27].

The inclusion of such a variety of different problems into a single framework requires all
different characteristics to be included as well. This naturally imposes a number of technical
difficulties, which many authors have since tried to surmount [27, 28].

The setting of symmetric positive systems appeared to be convenient for the numerical treat-
ment of various boundary value problems as well. Already Friedrichs considered the numerical
solution of such systems, by a finite difference scheme. The renewed interest in the theory of
Friedrichs systems during the last decade resulted in development of new numerical schemes
based on adaptations of the finite element method. Let us just mention [23], the Ph.D. thesis of
Max Jensen [24] and, most recently, [6, 16, 17, 18]. As we understand, some numerical algorithms
based on mixed finite element methods are more suitable for first order systems then for higher
order systems, which makes the framework of Friedrichs systems more convenient for numerical
treatment of some higher order equations. By applying some numerical scheme developed for
Friedrichs systems to a particular equation of interest, one often gets a numerical result (for that
equation) that was not known before.

Recently, Ern, Guermond and Caplain [16, 19] suggested another approach to the Friedrichs
systems, which was, as we understand, inspired by their interest in the numerical treatment of
Friedrichs systems. They expressed the theory in terms of operators acting in abstract Hilbert
spaces and represented the boundary conditions in an intrinsic way, thus avoiding the question
of traces for functions from the graph space of the considered operator. Some open questions
regarding the relationship of different representations of boundary conditions in the abstract
setting were answered in [2]. The precise relationship between the classical Friedrichs theory and
its abstract counterpart was investigated in [3, 4], which resulted in new applications to second
order equations, which were also addressed in [5] and [9]. In the first reference, the abstract
theory was applied to the heat equation, while in the second the homogenisation theory of the
Friedrichs systems was developed and contrasted to the known results for stationary diffusion
equation and the heat equation.

Although some evolution (non-stationary) problems can be treated within the framework of
abstract theory of Friedrichs systems developed in [19], by not making distinction between the
time variable and space variables [5], the theory is not suitable for some standard problems, like
the initial-boundary value problem for non-stationary Maxwell system, or the Cauchy problem
for symmetric hyperbolic systems.

In this paper we develop an abstract theory for non-stationary Friedrichs systems that can
address these problems as well. More precisely, we consider an abstract Cauchy problem in
the Hilbert space, involving a time independent abstract Friedrichs operator. In order to prove
the well-posedness, we use the semigroup theory approach and prove that the operator involved
satisfies the conditions of the Hille-Yosida generation theorem. Then a number of well-posedness
results for different notions of a solution (classical/strong/weak) can be derived from the classical
results for the abstract Cauchy problem [14, 26]. The semigroup theory allows the treatment of
semilinear problems [11] as well, resulting in the existence and uniqueness result for the semilinear
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non-stationary Friedrichs system. For some estimates on the solution of such problems we refer
to [8].

Although the well-posedness result was not known, there was already an aspiration for the
numerical treatment of non-stationary Friedrichs systems [10, 13]. Since a good well-posedness
theorem is desirable for the convergence analysis of a numerical scheme, we hope that our paper
will pave the way for new numerical results in this direction. For example, it would be interesting
to see whether results of [22] can be extended to Friedrichs systems, as well.

The paper is organised as follows: in the rest of this introductory section we recall the
abstract setting of [19]. The main results are contained in the second section, where we start by
introducing the abstract non-stationary Friedrichs system, then discuss some a priori bounds, and
finally prove that our operator satisfies conditions of the Hille-Yosida theorem. This enables us to
give the existence and uniqueness results for different notions of solution. We also prove that the
weak solution satisfies the starting equation in a certain vector valued L1 space, and discuss the
semilinear problem. In the third section we apply these result to a number of examples, namely
the Cauchy problem for the symmetric hyperbolic system, the initial-boundary value problem
for the unsteady Maxwell system, the initial-boundary value problem for the unsteady div-grad
problem, and the initial-value problem for the wave equation.

Abstract Hilbert space formalism

We start by describing the Hilbert space formalism introduced in [19], and recalling some basic
results about the abstract Friedrichs systems. By L we denote a real Hilbert space, identified with
its dual L′. Let D ⊆ L be its dense subspace, and L, L̃ : D −→ L (unbounded) linear operators
satisfying

(T1) (∀ϕ,ψ ∈ D) 〈 Lϕ | ψ 〉L = 〈ϕ | L̃ψ 〉L ,

(T2) (∃ c > 0)(∀ϕ ∈ D) ‖(L+ L̃)ϕ‖L 6 c‖ϕ‖L .
These properties together will be referred as (T).

If we denote by W0 the completion of the space (D, 〈 · | · 〉L), with the graph inner product
〈 · | · 〉L := 〈 · | · 〉L + 〈 L· | L· 〉L (the corresponding norm ‖ · ‖L is usually called the graph
norm), then L, L̃ can be extended by density to continuous linear operators W0 −→ L, with (T)
still holding for ϕ,ψ ∈ W0. Having in mind the Gelfand triple (the imbeddings are dense and
continuous)

W0 ↪→ L ≡ L′ ↪→W ′0 ,

they can be further extended [19, 2] via adjoint operators to L, L̃ ∈ L(L;W ′0). By

W := {u ∈ L : Lu ∈ L} = {u ∈ L : L̃u ∈ L} ,
we denote the graph space which, equipped with the graph norm, is a Hilbert space [19, Lemma
2.1].

The problem of interest is to find sufficient conditions on a subspace V ⊆ W , such that the
operator L|V : V −→ L is an isomorphism. In order to describe such V , we first introduce a

boundary operator D ∈ L(W ;W ′) defined by

W ′〈Du, v 〉W := 〈 Lu | v 〉L − 〈 u | L̃v 〉L , u, v ∈W ,

which is symmetric [19, Lemma 2.3], and kerD = W0 [19, Lemma 2.4].

We are now ready to describe V : let V and Ṽ be two subspaces of W satisfying

(V 1)
(∀ u ∈ V ) W ′〈Du, u 〉W > 0 ,

(∀ v ∈ Ṽ ) W ′〈Dv, v 〉W 6 0 ,

(V 2) V = D(Ṽ )0 , Ṽ = D(V )0 ,

where 0 stands for the annihilator. We shall refer to both (V1) and (V2) as (V). The following
lemma is immediate.
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Lemma 1. If (T) and (V2) hold, then V and Ṽ are closed, and kerD = W0 ⊆ V ∩ Ṽ .

In order to get the well-posedness result (for the stationary case) one additional assumption
that ensures the coercivity property of L and L̃ is needed:

(T3) (∃µ0 > 0)(∀ϕ ∈ D) 〈 (L+ L̃)ϕ | ϕ 〉L > 2µ0‖ϕ‖2L .

It is easy to see that the above property then holds for an arbitrary ϕ ∈ L. The operator L that
satisfies (T) and (T3) for some L̃, we call the abstract Friedrichs operator.

Lemma 2. ([19, Lemma 3.2]) Under assumptions (T1)–(T3) and (V), the operators L and L̃
are L–coercive on V and Ṽ , respectively; in other words:

(∀ u ∈ V ) 〈 Lu | u 〉L > µ0‖u‖2L ,
(∀ v ∈ Ṽ ) 〈 L̃v | v 〉L > µ0‖v‖2L .

Theorem 1. ([19, Theorem 3.1]) If (T1)–(T3) and (V) hold, then the restrictions of operators
L|V : V −→ L and L̃|

Ṽ
: Ṽ −→ L are isomorphisms.

The importance of this well-posedness result arises from relative simplicity of geometric conditions
(V), which, in the case when L is a partial differential operator, do not involve the notion of traces
for functions in the graph space of L.

Example. (Classical Friedrichs operator) Let d, r ∈ N, and Ω ⊆ Rd be an open and
bounded set with a Lipschitz boundary Γ. Furthermore, assume that the matrix functions Ak ∈
W1,∞(Ω; Mr(R)), k ∈ 1..d, satisfy

(F1) Ak is symmetric: Ak = A>k ,

and C ∈ L∞(Ω; Mr(R)). If we denote D := C∞c (Ω; Rr), L = L2(Ω; Rr), and define operators
L, L̃ : D −→ L by formulæ

Lu :=
d∑

k=1

∂k(Aku) + Cu ,

L̃u :=−
d∑

k=1

∂k(A
>
k u) + (C> +

d∑
k=1

∂kA
>
k )u ,

then L and L̃ satisfy (T). The graph space W is

W =
{

u ∈ L2(Ω; Rr) :
d∑

k=1

∂k(Aku) + Cu ∈ L2(Ω; Rr)
}
,

where we have to take distributional derivatives in the above formula, and the boundary operator,
for u, v ∈ C∞c (Rd; Rr), is given by

W ′〈Du, v 〉W =

∫
Γ

Aν(x)u|Γ(x) · v|Γ(x)dS(x) , with Aν :=

d∑
k=1

νkAk ,

where ν = (ν1, ν2, . . . , νd) ∈ L∞(Γ; Rd) is the unit outward normal on Γ. If we additionally
assume

(F2) (∃µ0 > 0) C + C> +

d∑
k=1

∂kAk > 2µ0I (a.e. on Ω) ,

then the property (T3) is also satisfied. The inequality above is meant in the sense of the order
on symmetric matrices.
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Remark. If we start in the previous example from the beginning with the coefficients defined on
the whole Rd instead of Ω, and consider the operators L, L̃ : D −→ L defined by above formulæ,
with D := C∞c (Rd; Rr), L = L2(Rd; Rr), then one can easily see that W = W0 = kerD [1, 7, 24],

which implies that the boundary operator D is trivial. Therefore, we can take V = Ṽ = W , and
these spaces satisfy conditions (V), which allows us to consider the initial value problem without
any other constrains in the non-stationary case.

2. Non-stationary problem

The abstract Cauchy problem

In the rest of the paper we shall consider an initial-boundary value problem for a non-
stationary Friedrichs system. To be specific, using the notation from the previous section, we
shall consider the abstract Cauchy problem:

(P)

{
u′(t) + Lu(t) = f

u(0) = u0
,

where u : [0, T 〉 −→ L, T > 0, is the unknown function, while the right-hand side f : 〈0, T 〉 −→ L,
the initial data u0 ∈ L and the abstract Friedrichs operator L are given. More precisely, we assume
that L does not depend on the time variable t and satisfies (T) , so that it can be extended to
the continuous linear operator L −→W ′0, as in the introductory section.

For more details about abstract Cauchy problems and the corresponding terminology used
here we refer to [26] with one exception that for the notion of mild solution we use the term weak
solution as it is the case in [11, 14].

Instead of the positivity assumption (T3), we require that L satisfies a weaker nonnegativity
assumption

(T3′) (∀ϕ ∈ D) 〈 (L+ L̃)ϕ | ϕ 〉L > 0 ,

but such operator we still call the abstract Friedrichs operator. Similarly as it was done in the
case of property (T3), one can see that (T3′) actually holds for arbitrary ϕ ∈ L.

Remark. In reference to the classical Friedrichs operator of the example above, the condition
(F2) can be weakened to

(F2′) C + C> +
d∑

k=1

∂kAk > 0 (a.e. on Ω) ,

as this is enough to ensure the validity of (T3′).
Actually, if L satisfies only (F1), the positivity condition (F2) can be achieved by substituting

v := e−λtu, for some suitable λ > 0: then the corresponding non-stationary system becomes

∂tv + (L+ λI)v = e−λtf ,

where I is the identity matrix, and since all matrices appearing in the above expression are
bounded, we can choose λ large enough so that (F2) is satisfied. Therefore, the operator L+ λI
and its formal adjoint satisfy (T1)–(T3). Note also that the initial condition u(0, ·) = u0 is
equivalent to v(0, ·) = u0 while the graph space of operator L+λI is the same as the graph space
of L, with equivalent norms.

In order to fully describe problem (P), it remains to be clarified what is the domain D(L) of
L. As the equation (P)1 should hold in L, we can take any subspace of the graph space W . If L
is a partial differential operator, then the choice of domain of L corresponds to given boundary
conditions, and it is then natural to take for D(L) to be some subspace V satisfying (V). Then one
can easily prove a similar result as in Lemma 2 if the weaker assumption (T3′) is taken instead
of (T3).
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Lemma 3. Under assumptions (T), (T3′) and (V), the operators L and L̃ are L-accretive on

V and Ṽ , respectively, i.e. they satisfy

(∀ u ∈ V ) 〈 Lu | u 〉L > 0 ,

(∀ v ∈ Ṽ ) 〈 L̃v | v 〉L > 0 .

If u is the classical solution of (P) on [0, T 〉 (see [26] for definitions of different notions of a
solution), one can easily derive an a priori estimate

(∀ t ∈ [0, T ]) ‖u(t)‖2L 6 et
(
‖u0‖2L +

∫ t

0
‖f(s)‖2L

)
,

from which the uniqueness of classical solution is immediate. Indeed, from (P)1 we have

〈 u′(t) | u(t) 〉L + 〈 Lu(t) | u(t) 〉L = 〈 f(t) | u(t) 〉L ,

and by (T3′) it follows

d

dt
‖u(t)‖2L 6 2〈 f(t) | u(t) 〉L 6 ‖u(t)‖2L + ‖f(t)‖2L ,

from where, after applying the differential form of the Gronwall inequality, we get the a priori
estimate. Here we have assumed that the right-hand side of (P)1 is square-integrable, i.e. f ∈
L2(〈0, T 〉;L). Clearly, this is not sufficient for the existence of the classical solution and precise
sufficient assumptions will be presented in the sequel, as well as a sharper a priori estimate.

Semigroup approach

In order to fit our problem (P) in the setting of the semigroup theory, let us take a subspace
V of W satisfying (V), and define an operator A : V −→ L by A := −L|V . We can now rewrite

our problem (P) in terms of operator A:

(P′)

{
u′(t)−Au(t) = f

u(0) = u0
,

and since the domain V of A is equipped with the topology inherited from L (and not the graph
norm), A is unbounded in general.

Our goal is to show that A is an infinitesimal generator of a strongly continuous semigroup
(C0-semigroup) on L. If we succeed, then our problem (P′) (and thus also (P)) can be fitted in
the setting of abstract Cauchy problems of the semigroup theory. The following theorem is the
main result of this paper.

Theorem 2. A is the infinitesimal generator of a contraction C0-semigroup (T (t))t>0 on L.

Dem. According to the Hille-Yosida generation theorem (see [26, Theorem 3.1 on p. 8]) it is
necessary and sufficient to show that
a) V is dense in L,
b) A is closed,
c) ρ(A) ⊇ 〈0,∞〉 and ‖Rλ(A)‖ 6 1

λ , for every λ > 0, where ρ(A) is the resolvent set of A, while
Rλ(A) is the resolvent.
Density of V is a direct consequence of Lemma 1. In order to prove (b), let us take a sequence

(un) in V such that un −→ u and Aun −→ f, both in L. We need to show that u ∈ V and f = Au.
It is easy to show that (un) is a Cauchy sequence in the complete graph space W . Indeed,

‖un − um‖2W = ‖un − um‖2L + ‖Lun − Lum‖2L
= ‖un − um‖2L + ‖Aun −Aum‖2L ,
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and the claim follows by the assumption that (un) and (Aun) are convergent (therefore Cauchy)
sequences in L. Thus (un) is convergent in W and, because V is closed in W , we additionally have
that the limit v is in V . The convergence in the graph norm gives us un −→ v and Aun −→ Av
in L, which implies u = v ∈ V and f = Av = Au.

In order to prove the last statement, let us define Lλ := λI + L and a corresponding L̃λ :=
λI+ L̃, for an arbitrary λ > 0, and let us show that Lλ is an isomorphism from V to L. The idea
of proof is to show that Lλ and L̃λ satisfy (T1)–(T3) and then apply Theorem 1. The condition
(T1) is trivially satisfied, (T2) is satisfied if we take c + 2λ as the constant, and since L and L̃
satisfy (T3′) we have

〈 (Lλ + L̃λ)u | u 〉L = 〈 (L+ L̃)u | u 〉L + 2λ〈 u | u 〉L > 2λ‖u‖2L ,

for every u ∈ L, which is exactly (T3). Before applying Theorem 1, it is important to notice that
the corresponding graph space Wλ and the boundary operator Dλ of operator Lλ do not depend
on λ. Indeed, one can verify that for every λ > 0 we have Wλ = W and Dλ = D, which implies
that subspace V satisfy conditions (V) in the graph space of operator Lλ. Now we have that
Lλ|V : V −→ L is an isomorphism, and therefore ρ(A) ⊇ 〈0,∞〉. Finally, Lemma 2 gives us

‖Lλ|V ‖ > λ =⇒ ‖Rλ(A)‖ 6 1

λ
,

because Rλ(A) = (Lλ|V )−1.

Q.E.D.

Remark. Instead of using the Hille-Yosida theorem in the proof of the previous theorem, we
could alternatively (like in [14, p. 412] and [26, p. 14]) prove that A is maximal dissipative, i.e.
A is dissipative (which is a direct consequence of (T3′)) and im (I −A) = L, and then apply the
Lumer-Phillips theorem.

After we have established that A generates a contraction C0-semigroup we can use some
classical results given in [11, 26] to derive various conclusions about solvability of (P), and one of
them we summarise in the following corollary.

Corollary 1. Let L be an operator that satisfies (T) and (T3′), V a subspace of its graph space
satisfying (V), and f ∈ L1(〈0, T 〉;L).
a) Then for every u0 ∈ L the problem (P) has the unique weak solution u ∈ C([0, T ];L) given

by

u(t) = T (t)u0 +

∫ t

0
T (t− s)f(s)ds , t ∈ [0, T ] ,

where (T (t))t>0 is as in Theorem 2.

b) If additionally u0 ∈ V and f ∈W1,1(〈0, T 〉;L)∪
(

C([0, T ];L)∩L1(〈0, T 〉;V )
)

, with V equipped

with the graph norm, then the above weak solution is the classical solution of (P) on [0, T 〉.

Remark. From the formula for the solution one can easily get the estimate

(∀ t ∈ [0, T ]) ‖u(t)‖L 6 ‖u0‖L +

∫ t

0
‖f(s)‖Lds .

By the definition of weak solution it is clear that it satisfies the initial condition, while the
equation is satisfied in the meaning of [26, Theorem 2.7 on p. 108]. However, in our setting we
can show that the weak solution satisfies the equation in a certain space (a similar observation
has been done in [14, p. 406]).
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Theorem 3. Let u0 ∈ L, f ∈ L1(〈0, T 〉;L) and let u be the weak solution of (P). Then u′,Lu, f ∈
L1(〈0, T 〉;W ′0) and

u′ + Lu = f ,

in L1(〈0, T 〉;W ′0).

Dem. According to [26, Theorem 2.7 on p. 108], there exists a sequence of the classical solutions
un to (P′) with right hand sides fn ∈ C1([0, T ];L) and initial conditions u0n ∈ V , such that
fn −→ f in L1(〈0, T 〉;L), u0n −→ u0 in L, and un −→ u in C([0, T ];L).

Since L ∈ L(L;W ′0), we have Lun −→ Lu in C([0, T ];W ′0), which implies the convergence
in the space L1(〈0, T 〉;W ′0). As L is continuously embedded in W ′0, we also have fn −→ f in
L1(〈0, T 〉;W ′0). Thus

u′n = −Lun + fn −→ −Lu + f ,

in L1(〈0, T 〉;W ′0). On the other hand un −→ u in the space of vector valued distributions
D′(〈0, T 〉;W ′0), which implies u′n −→ u′ in D′(〈0, T 〉;W ′0) (see [14, p. 218]). The uniqueness
of the limit in the space of vector valued distributions gives us

u′ + Lu = f

in D′(〈0, T 〉;W ′0), and since Lu, f ∈ L1(〈0, T 〉;W ′0) and L1(〈0, T 〉;W ′0) is continuously embedded
in D′(〈0, T 〉;W ′0), we also have u′ ∈ L1(〈0, T 〉;W ′0).

Q.E.D.

Remark. As it is well known, semilinear problems can also be treated via the semigroup theory
[11, 26]. Therefore, we can get the existence and uniqueness result for the abstract Cauchy
problem {

u′(t) + Lu(t) = f(t, u(t))

u(0) = u0
,

where L is an abstract Friedrichs operator, and the right-hand side f : 〈0, T 〉 × L −→ L depends
also on the unknown function. Usual assumptions on f that ensure existence and uniqueness of
the weak solution are continuity and some kind of Lipschitz continuity in the last variable (see
[11, Ch. 4] and [26, Ch. 6]). For some estimates on the solution see [8].

3. Examples

We shall now prove that some well-known examples fit in our setting of non-stationary
Friedrichs systems, and apply the results of the previous section.

Initial problem for symmetric hyperbolic system

We consider the initial problem for first-order system

(HS)

 ∂tu +

d∑
k=1

∂k(Aku) + Cu = f in 〈0, T 〉 ×Rd

u(0, ·) = u0

,

where T > 0 is some given time, and the coefficients Ak ∈ W1,∞(Rd; Md(R)), k ∈ 1..n, C ∈
L∞(Rd; Md(R)) do not depend on time. For the right-hand side and the initial datum we suppose
f ∈ L1(〈0, T 〉; L2(Rd; Rd)) and u0 ∈ L2(Rd; Rd), while u : [0, T 〉 × Rd −→ Rd is the unknown
function. We also suppose that each Ak is symmetric a.e. on Rd.

One can easily see that (HS) fits in our framework of non-stationary Friedrichs systems with
the operator L taken to be

Lu :=
d∑

k=1

∂k(Aku) + Cu .
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Indeed, the symmetry condition (F1) is trivially satisfied, while the positivity condition (F2) can
be obtained by using the substitution v := e−λtu, for some λ > 0 large enough, as remarked
before. Then our Friedrichs system reads

∂tv + (L+ λI)v = e−λtf ,

the initial condition remains v(0, ·) = u0, and the graph space of the operator L+ λI is the same
as the graph space of L, with equivalent norms: W = {w ∈ L2(Rd; Rd) : Lw ∈ L2(Rd; Rd)}.
Now, as a consequence of the remark closing the introductory section and Corollary 1, we have
the result of existence and uniqueness of the solution to (HS).

Theorem 4. Let f ∈ W1,1(〈0, T 〉; L2(Rd; Rd)) ∪
(

C([0, T ]; L2(Rd; Rd)) ∩ L1(〈0, T 〉;W )
)

and

u0 ∈W . Then the abstract initial-value problem u′ +
d∑

k=1

∂k(Aku) + Cu = f

u(0) = u0

has the unique classical solution given by

u(t) = eλtT(t)u0 +

∫ t

0
eλ(t−s)T(t− s)f(s)ds , t ∈ [0, T ] ,

where (T(t))t>0 is the contraction C0-semigroup generated by −L− λI.

Remark. The above formula could have been written in terms of the C0-semigroup S(t) :=
eλtT(t), with the infinitesimal generator −L [26, p. 12].

Remark. A similar existence and uniqueness result for the Cauchy problem for the symmetric
hyperbolic systems, under some additional assumptions on coefficients can be found in [20].

Time-dependent Maxwell system

Let Ω ⊆ R3 be open and bounded with a Lipschitz boundary Γ, T > 0, Σij ∈ L∞(Ω; M3(R)),
i, j ∈ {1, 2}, f1, f2 ∈ L1(〈0, T 〉; L2(Ω; R3)), µ, ε ∈ W1,∞(Ω; M3(R)) and constants µ0, ε0 ∈ R+

such that for every x ∈ Ω, µ(x) and ε(x) are symmetric, and µ > µ0I, ε > ε0I. We consider the
generalised time-dependent Maxwell system:

(MS)

{
µ∂tH + rot E + Σ11H + Σ12E = f1

ε∂tE− rot H + Σ21H + Σ22E = f2
in 〈0, T 〉 × Ω ,

where E,H : [0, T 〉 × Ω −→ R3 are the unknown functions.

Remark. If we take f1 ≡ 0, f2 = J, Σ11 = Σ12 = Σ21 ≡ 0 we will get the (standard) Maxwell
system in a linear nonhomogeneous anisotropic medium. In that case H, E, ε, Σ22, µ, J represent
the magnetic and electric fields, the electric permeability, the conductivity of the medium, the
magnetic susceptibility of the material in Ω and the applied current density, respectively.

The principal square roots µ(x)
1
2 and ε(x)

1
2 of µ(x) and ε(x) are well-defined for every x ∈ Ω

because µ(x) and ε(x) are positive-definite matrices, which justifies definitions µ
1
2 (x) := µ(x)

1
2 ,

ε
1
2 (x) := ε(x)

1
2 . Moreover, we have µ

1
2 , ε

1
2 ∈ W1,∞(Ω; M3(R)), both µ

1
2 (x) and ε

1
2 (x) are

symmetric, for every x ∈ Ω, with µ
1
2 > µ0

1
2 I, ε

1
2 > ε0

1
2 I. The last property implies that

µ
1
2 (x) and ε

1
2 (x) are regular, for every x, and moreover µ−

1
2 , ε−

1
2 ∈ W1,∞(Ω; M3(R)), where

µ−
1
2 (x) := µ

1
2 (x)−1 and ε−

1
2 (x) := ε

1
2 (x)−1.

Krešimir Burazin∗ & Marko Erceg 8
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After introducing the substitutions (using the previous notation)

u :=

[
u1

u2

]
=

[
µ

1
2 H

ε
1
2 E

]
,

and multiplying the first three equations by µ−
1
2 , and the last three by ε−

1
2 , we can write our

system as

∂tu + Lu = F ,

where

Lu :=

[
µ−

1
2 rot (ε−

1
2 u2)

−ε−
1
2 rot (µ−

1
2 u1)

]
+

[
µ−

1
2 Σ11µ

− 1
2 µ−

1
2 Σ12ε

− 1
2

ε−
1
2 Σ21µ

− 1
2 ε−

1
2 Σ22ε

− 1
2

] [
u1

u2

]
, F =

[
µ−

1
2 f1

ε−
1
2 f2

]
.

To conclude that L is a classical Friedrichs operator we still need to do some computations:

µ−
1
2 rot (ε−

1
2 u2) = µ−

1
2

3∑
k=1

∂k(Bkε
− 1

2 u2)

=

3∑
k=1

∂k(µ
− 1

2Bkε
− 1

2 u2)−
( 3∑
k=1

(∂kµ
− 1

2 )Bkε
− 1

2

)
u2 ,

where

B1 =

 0 0 0
0 0 −1
0 1 0

 , B2 =

 0 0 1
0 0 0
−1 0 0

 , B3 =

 0 −1 0
1 0 0
0 0 0


are matrices corresponding to the differential operator rot . We can analogously rewrite the last

three components −ε−
1
2 rot (µ−

1
2 u1) and get:

[
µ−

1
2 rot (ε−

1
2 u2)

−ε−
1
2 rot (µ−

1
2 u1)

]
=

3∑
k=1

∂k

([
0 µ−

1
2Bkε

− 1
2

ε−
1
2B>k µ

− 1
2 0

]
u

)

+

(
3∑

k=1

[
0 (∂kµ

− 1
2 )B>k ε

− 1
2

(∂kε
− 1

2 )Bkµ
− 1

2 0

])
u .

If we define

Ak :=

[
0 µ−

1
2Bkε

− 1
2

ε−
1
2B>k µ

− 1
2 0

]
, k ∈ 1..3 ,

C :=
3∑

k=1

[
0 (∂kµ

− 1
2 )B>k ε

− 1
2

(∂kε
− 1

2 )Bkµ
− 1

2 0

]
+

[
µ−

1
2 Σ11µ

− 1
2 µ−

1
2 Σ12ε

− 1
2

ε−
1
2 Σ21µ

− 1
2 ε−

1
2 Σ22ε

− 1
2

]
,

then one can easily see that L takes the form

Lu =

3∑
k=1

∂k(Aku) + Cu

of the classical Friedrichs partial differential operator. Indeed, the symmetry condition (F1)
is trivially satisfied, while the positivity condition (F2) can be obtained using the substitution
v := e−λtu, as in the previous example. Therefore, without loss of generality, let us assume that
our operator L satisfies the positivity condition (F2).
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Remark. As the system above is a symmetric hyperbolic system, the Cauchy problem on whole
R3 is contained in the setting of the previous example, so the existence and uniqueness result is
immediate. Using that, we can get the existence and uniqueness result for the Cauchy problem
of the starting Maxwell system (MS).

Obviously, the spaces involved are

L = L2(Ω; R3)× L2(Ω; R3) ,

W =

{
u =

[
u1

u2

]
∈ L :

[
rot (µ−

1
2 u1)

rot (ε−
1
2 u2)

]
∈ L

}
=

{
u =

[
u1

u2

]
∈ L :

[
µ−

1
2 u1

ε−
1
2 u2

]
∈ L2

rot(Ω; R3)× L2
rot(Ω; R3)

}
,

where L2
rot(Ω; R3) stands for the graph space of differential operator rot . Because µ−

1
2 and ε−

1
2

are uniformly bounded from below and above the graph norm ‖ · ‖L is equivalent with the norm

‖u‖ :=

∥∥∥∥∥
[
µ−

1
2 u1

ε−
1
2 u2

]∥∥∥∥∥
L2
rot(Ω;R3)×L2

rot(Ω;R3)

on W .
If we denote by ν = (ν1, ν2, ν3) ∈ L∞(Γ; R3) the unit outward normal on Γ, matrix field Aν

can be written as a block matrix

Aν =

[
0 µ−

1
2 Arot

ν ε−
1
2

−ε−
1
2 Arot

ν µ−
1
2 0

]
,

where

Arot
ν =

 0 −ν3 ν2

ν3 0 −ν1

−ν2 ν1 0


is a matrix corresponding to the operator rot . We can describe the boundary operator D in terms

of the trace operator TH1 : H1(Ω; R3) −→ H
1
2 (Γ; R3) and the tangential trace operator (see [1],

[7]) Trot : L2
rot(Ω; R3) −→ H−

1
2 (Γ; R3). Indeed, for u, v ∈ C∞c (R3; R6), we have

W ′〈Du, v 〉W =

∫
Γ

Aν(x)u|Γ(x) · v|Γ(x)dS(x)

=
H−

1
2
〈µ−

1
2Trot(ε

− 1
2 u2), TH1v1 〉

H
1
2
−

H−
1
2
〈 ε−

1
2Trot(µ

− 1
2 u1), TH1v2 〉

H
1
2

=
H−

1
2
〈µ−

1
2Trot(ε

− 1
2 v2), TH1u1 〉

H
1
2
−

H−
1
2
〈 ε−

1
2Trot(µ

− 1
2 v1), TH1u2 〉

H
1
2
,

where the second equation can be extended by density to (u, v) ∈W ×H1(Ω; R6), and the third
one to (u, v) ∈ H1(Ω; R6)×W . Also note that in the above expression we have multiplication of

a functional from H−
1
2 (Γ; R3) by matrix Lipschitz functions µ−

1
2 and ε−

1
2 , which is well-defined

as follows

H−
1
2
〈µ−

1
2 g, z 〉

H
1
2

:=
H−

1
2
〈 g,µ

− 1
2

|Γ
z 〉

H
1
2
, z ∈ H

1
2 (Γ; R3) , g ∈ H−

1
2 (Γ; R3) ,

and analogously for ε−
1
2 .

Let us take the subspace V that corresponds to the boundary condition ν × E|Γ = 0 (in the

case when the corresponding function is not smooth, we interpret this notion in terms of the trace
operators):

V = Ṽ = {u ∈W : Trot(ε
− 1

2 u2) = 0}
= {u ∈W : TrotE = 0} ,
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and verify the conditions (V1) and (V2). Note that u ∈ V if and only if [H E]> ∈ L2
rot(Ω; R3)×

L2
rot,0(Ω; R3), where L2

rot,0(Ω; R3) := Cl L2
rot(Ω;R3)C

∞
c (Ω; R3).

To prove (V1) we need to show

(∀ u ∈ V ) W ′〈Du, u 〉W = 0 .

Since u = [u1 u2]> ∈ V implies µ−
1
2 u1 ∈ L2

rot(Ω; R3) and ε−
1
2 u2 ∈ L2

rot,0(Ω; R3), there is a

sequence (un) = ([un1 un2 ]>) in H1(Ω; R3) × C∞c (Ω; R3) such that un −→ u in W . As TH1un2 = 0

and Trot(ε
− 1

2 un2 ) = ν ×TH1(ε−
1
2 un2 ) = 0, using computed identity for D and its continuity, we get

W ′〈Du, u 〉W = lim
n

W ′〈Dun, un 〉W = lim
n

0 = 0 ,

which proves (V1).
In order to prove (V2), let us first take arbitrary u, v ∈ V and the corresponding approxi-

mating sequences (un), (vn) from H1(Ω; R3)×C∞c (Ω; R3), as in the previous case. Similarly like
before, we have

W ′〈Dv, u 〉W = lim
n

W ′〈Dvn, un 〉W = lim
n

0 = 0 ,

as Trot(ε
− 1

2 un2 ) = TH1vn2 = 0, which gives us V ⊆ D(V )0. For the opposite inclusion we need to
show that for an arbitrary u = [u1 u2]> ∈W , condition

(∀ v ∈ V ) W ′〈Dv, u 〉W = 0 ,

implies Trot(ε
− 1

2 u2) = 0. If we put in the above equality v = [v1 0]>, v1 ∈ H1(Ω; R3), we get

W ′〈Dv, u 〉W =
H−

1
2
〈µ−

1
2Trot(ε

− 1
2 u2), TH1v1 〉

H
1
2

= 0 .

Since v1 ∈ H1(Ω; R3) is arbitrary, TH1 is surjective and the mapping z 7→ µ−
1
2 z is from H

1
2 (Γ; R3)

onto H
1
2 (Γ; R3), we get, Trot(ε

− 1
2 u2) = 0, and (V2) is obtained.

Let us summarise, using Corollary 1, all that has been shown in the following theorem.

Theorem 5. Let E0 ∈ L2
rot,0(Ω; R3),H0 ∈ L2

rot(Ω; R3) and let f1, f2 ∈ C([0, T ]; L2(Ω; R3)) satisfy
at least one of the following two conditions

i) f1, f2 ∈W1,1(〈0, T 〉; L2(Ω; R3));
ii) µ−1f1 ∈ L1(〈0, T 〉; L2

rot(Ω; R3)), ε−1f2 ∈ L1(〈0, T 〉; L2
rot,0(Ω; R3)).

Then the abstract initial-boundary value problem

µH′ + rot E + Σ11H + Σ12E = f1

εE′ − rot H + Σ21H + Σ22E = f2

E(0) = E0

H(0) = H0

ν × E|Γ = 0

has the unique classical solution given by[
H
E

]
(t) =

[
µ−

1
2 0

0 ε−
1
2

]
T(t)

[
µ

1
2 H0

ε
1
2 E0

]
+

[
µ−

1
2 0

0 ε−
1
2

] ∫ t

0
T(t− s)

[
µ−

1
2 f1(s)

ε−
1
2 f2(s)

]
ds , t ∈ [0, T ] ,

where (T(t))t>0 is the contraction C0-semigroup generated by −L.

Remark. The above theorem is valid if the corresponding Friedrichs operator satisfies (F2′).
As written before, if this is not the case, then the positivity condition can be obtained by a simple
change of variable. The statement of the above theorem should also be changed accordingly.
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Remark. Note that we assume Lipschitz continuity of coefficients µ and ε, as they appear
in matrices Ak for which Lipschitz continuity is required. This condition can be slightly relaxed
[see 19] by assuming that each Ak, as well as

∑
k ∂kAk is bounded function. However, these

assumptions are still to strong to allow piecewise smooth coefficients in Maxwell system, which
are often of interest.

We can get a similar result if we take the boundary condition ν × H|Γ = 0 instead of

ν × E|Γ = 0. More precisely, it can be shown that spaces

V = Ṽ = {u ∈W : Trot(µ
− 1

2 u1) = 0}
= {u ∈W : TrotH = 0}

satisfy (V), which gives us well-posedness of the corresponding initial-boundary value problem.

Remark. For more information regarding the Maxwell system, we refer to [12], [14].

Unsteady div-grad problem

Let Ω ⊆ Rd be open and bounded with a Lipschitz boundary Γ, f1 ∈ L1(〈0, T 〉; L2(Ω; Rd)),
f2 ∈ L1(〈0, T 〉; L2(Ω; R)), and c > 0. We consider a system of equations

(DG)

 ∂tq +∇p = f1
1

c2
∂tp+ div q = f2

in 〈0, T 〉 × Ω ,

with the unknowns p : [0, T 〉 × Ω −→ R and q : [0, T 〉 × Ω −→ Rd.

Remark. These are linearised equations for the propagation of sound in the inviscid, elastic and
compressible fluid, describing small disturbances [25]. Here, the unknowns q and p correspond to
the velocity of the fluid and the pressure, while the constant c stands for the speed of sound in
the fluid.

After introducing the substitution

u :=

[
u1

u2

]
=

[
1
cp
q

]
,

we get an evolution Friedrichs system

∂tu + Lu = F ,

where F =

[
cf2

f1

]
and Lu :=

[
c div u2

c∇u1

]
is the classical Friedrichs operator satisfying (F1) and

(F2′), with C = 0 and Ak = c e1 ⊗ ek+1 + c ek+1 ⊗ e1 ∈ M1+d(R).
Obviously, we have

W = H1(Ω)× L2
div(Ω; Rd) ,

W0 = H1
0(Ω)× L2

div,0(Ω; Rd) = ClWC∞c (Ω; R1+d) ,

where L2
div(Ω; Rd) is the graph space of differential operator div , and L2

div,0(Ω; Rd) is the closure

of C∞c (Ω; Rd) in the graph norm of L2
div(Ω; Rd).

Remark. As the system above is a symmetric hyperbolic system, the Cauchy problem on
whole Rd is contained in the setting of the first example, so the existence and uniqueness result
is immediate, which also implies the existence and uniqueness result for the Cauchy problem of
the unsteady div-grad problem. In this case we have V = Ṽ = W = H1(Rd)× L2

div(Rd; Rd).
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We shall study two possible boundary conditions, the first one is given by

V = Ṽ = H1
0(Ω)× L2

div(Ω; Rd) ,

and it clearly corresponds to the boundary condition p|Γ = 0 (in the case when the corresponding

function is not smooth, we interpret this notion in terms of the trace operators). In [19, Lemma
5.3] it is shown that (V ) is satisfyied for these V and Ṽ , hence by Corollary 1 we have the
existence result.

Theorem 6. Let q0 ∈ L2
div(Ω; Rd), p0 ∈ H1

0(Ω) and let functions f1 ∈ C([0, T ]; L2(Ω; Rd)) and
f2 ∈ C([0, T ]; L2(Ω)) satisfy at least one of the following two conditions

i) f1 ∈W1,1(〈0, T 〉; L2(Ω; Rd)), f2 ∈W1,1(〈0, T 〉; L2(Ω));
ii) f1 ∈ L1(〈0, T 〉; L2

div(Ω; Rd)), f2 ∈ L1(〈0, T 〉; H1
0(Ω)).

Then the abstract initial-boundary-value problem

q′ +∇p = f1
1

c2
p′ + div q = f2

q(0) = q0

p(0) = p0

p|Γ = 0

has the unique classical solution given by[
p
q

]
=

[
c 0>

0 I

]
T(t)

[
1
cp0

q0

]
+

[
c 0>

0 I

] ∫ t

0
T(t− s)

[
cf2

f1

]
ds , t ∈ [0, T ] ,

where (T(t))t>0 is the contraction C0-semigroup generated by −L.

We can get a similar result for the another possible boundary condition ν · q = 0|Γ , i.e. for

the subspaces
V = Ṽ = H1(Ω)× L2

div,0(Ω; Rd) .

Initial-value problem for the wave equation

Let us now consider the initial-value problem

(WE)


∂ttu− c24u = f in 〈0, T 〉 ×Rd

u(0, ·) = u0

∂tu(0, ·) = u1
0

,

where T > 0 is a given constant, c > 0 represents the propagation speed of the wave, f ∈
L1(〈0, T 〉; L2(Rd)) is the external force, u0 ∈ H1(Rd) and u1

0 ∈ L2(Rd) are the initial position
and velocity respectively, while u : [0, T 〉 ×Rd −→ R is the unknown function which represents
the displacement.

After a change of variable

u :=

[
u1

u2

]
=

[
∂tu
−c∇u

]
,

we get the same system ∂tu + Lu = F as in the previous example with f1 ≡ 0 and f2 = 1
cf . Note

that the last d equations of this system are actually the Schwarz symmetry relations, while the
first one results from the wave equation we started with. The initial condition transforms to

u(0) =

[
u1(0)
u2(0)

]
=

[
u1

0

−c∇u0

]
=: u0 .
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Our problem fits in the framework of the Cauchy problem for the unsteady div-grad problem
(which is remarked in the previous example), so for V = Ṽ = W = H1(Rd) × L2

div(Rd; Rd) we
have the existence result.

However, due to our change of variable, we only have information about the derivatives of
the original unknown. Therefore, in order to find u one must solve the problem

(odeP)

{
u′(t) = u1(t)

u(0) = u0
.

Let us illustrate this in the case of the classical solution; if we additionally assume f ∈
W1,1(〈0, T 〉; L2(Rd))∪

(
C([0, T ]; L2(Rd))∩L1(〈0, T 〉; H1(Rd))

)
, u1

0 ∈ H1(Rd) and 4u0 ∈ L2(Rd),

then (by Corollary 1) the abstract Cauchy problem

(P)

{
u′(t) + Lu(t) = F

u(0) = u0

has the classical solution u ∈ C1(〈0, T 〉; L2(Rd; Rd+1)) ∩ C([0, T ]; L2(Rd; Rd+1)) ∩ C(〈0, T 〉;W ).
Therefore

u1 ∈ C1(〈0, T 〉; L2(Rd)) ∩ C([0, T ]; L2(Rd)) ∩ C(〈0, T 〉; H1(Rd)) ,

u2 ∈ C1(〈0, T 〉; L2(Rd; Rd)) ∩ C([0, T ]; L2(Rd; Rd)) ∩ C(〈0, T 〉; L2
div(Rd; Rd)) ,

which ensures that the problem (odeP) has the unique solution u belonging to

C2(〈0, T 〉; L2(Rd)) ∩ C1(〈0, T 〉; H1(Rd)) ∩ C([0, T ]; H1(Rd)) .

Note that this u already satisfies the first initial condition in (WE). Let us show that it also
satisfies the wave equation in C(〈0, T 〉; L2(Rd)).

Since ∇ : H1(Rd) −→ L2(Rd) is a continuous linear operator, it follows that the opera-
tor (which we denote the same) defined by (∇u)(t) := ∇(u(t)) is a linear continuous operator
C1(〈0, T 〉; H1(Rd)) −→ C1(〈0, T 〉; L2(Rd)) and C(〈0, T 〉; H1(Rd)) −→ C(〈0, T 〉; L2(Rd)), which
commutes with the time derivative: ∇(u′) = (∇u)′. Using this, the last d equations in (P)
and (odeP)1, we get u′2 = (−c∇u)′ in the space C(〈0, T 〉; L2(Rd; Rd)), which together with the
initial conditions for u2 and u imply u2 = −c∇u. Note that, as an additional consequence we
have ∇u ∈ C(〈0, T 〉; L2

div(Rd)). Substituting u1 and u2 in the first equation in (P) we get (in
C(〈0, T 〉; L2(Rd)))

u′′ = u′1 = −c div u2 + f = −c div (−c∇u) + f = c24u+ f .

It remains to prove that u satisfies the second initial condition in (WE), which easily follows
from u′ = u1 in C(〈0, T 〉; L2(Rd)), u1 ∈ C([0, T ]; L2(Rd)) and u1(0) = u1

0.

Remark. A similar existence and uniqueness result for the initial-value problem for the wave
equation within the framework of a semigroup theory can be found in [26].

Remark. Using results of the unsteady div-grad problem, we can get the existence and
uniqueness results for the initial-boundary value problem for the wave equation with two possible
boundary conditions:

∂tu|Γ = 0 ,

which corresponds to the Dirichlet boundary conditions, or

ν · ∇u|Γ = 0 .

which is the homogeneous Neumann boundary condition.
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